DocumentCode :
1021326
Title :
Fixation Precision in High-Speed Noncontact Eye-Gaze Tracking
Author :
Hennessey, Craig ; Noureddin, Borna ; Lawrence, Peter
Author_Institution :
Univ. of British Columbia, Vancouver
Volume :
38
Issue :
2
fYear :
2008
fDate :
4/1/2008 12:00:00 AM
Firstpage :
289
Lastpage :
298
Abstract :
The precision of point-of-gaze (POG) estimation during a fixation is an important factor in determining the usability of a noncontact eye-gaze tracking system for real-time applications. The objective of this paper is to define and measure POG fixation precision, propose methods for increasing the fixation precision, and examine the improvements when the methods are applied to two POG estimation approaches. To achieve these objectives, techniques for high-speed image processing that allow POG sampling rates of over 400 Hz are presented. With these high-speed POG sampling rates, the fixation precision can be improved by filtering while maintaining an acceptable real-time latency. The high-speed sampling and digital filtering techniques developed were applied to two POG estimation techniques, i.e., the highspeed pupil-corneal reflection (HS P-CR) vector method and a 3-D model-based method allowing free head motion. Evaluation on the subjects has shown that when operating at 407 frames per second (fps) with filtering, the fixation precision for the HS P-CR POG estimation method was improved by a factor of 5.8 to 0.035deg (1.6 screen pixels) compared to the unfiltered operation at 30 fps. For the 3-D POG estimation method, the fixation precision was improved by a factor of 11 to 0.050deg (2.3 screen pixels) compared to the unfiltered operation at 30 fps.
Keywords :
image processing; motion estimation; tracking filters; 3D model-based method; digital filtering; fixation precision; head motion; high-speed pupil-corneal reflection vector; image processing; noncontact eye-gaze tracking; point-of-gaze estimation; real-time latency; Eye-gaze tracking; fixation precision; head free; high speed; human–computer interface; human??computer interface; noncontact; remote; Algorithms; Artificial Intelligence; Computer Simulation; Fixation, Ocular; Image Enhancement; Image Interpretation, Computer-Assisted; Models, Biological; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Video Recording;
fLanguage :
English
Journal_Title :
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
Publisher :
ieee
ISSN :
1083-4419
Type :
jour
DOI :
10.1109/TSMCB.2007.911378
Filename :
4410444
Link To Document :
بازگشت