• DocumentCode
    1026445
  • Title

    Convergence of proportional-fair sharing algorithms under general conditions

  • Author

    Kushner, Harold J. ; Whiting, Philip A.

  • Author_Institution
    Div. of Appl. Math., Brown Univ., Providence, RI, USA
  • Volume
    3
  • Issue
    4
  • fYear
    2004
  • fDate
    7/1/2004 12:00:00 AM
  • Firstpage
    1250
  • Lastpage
    1259
  • Abstract
    We are concerned with the allocation of the base station transmitter time in time-varying mobile communications with many users who are transmitting data. Time is divided into small scheduling intervals, and the channel rates for the various users are available at the start of the intervals. Since the rates vary randomly, in selecting the current user there is a conflict between full use (by selecting the user with the highest current rate) and fairness (which entails consideration for users with poor throughput to date). The proportional fair scheduler of the Qualcomm High Data Rate system and related algorithms are designed to deal with such conflicts. The aim here is to put such algorithms on a sure mathematical footing and analyze their behavior. The available analysis, while obtaining interesting information, does not address the actual convergence for arbitrarily many users under general conditions. Such algorithms are of the stochastic approximation type and results of stochastic approximation are used to analyze the long-term properties. It is shown that the limiting behavior of the sample paths of the throughputs converges to the solution of an intuitively reasonable ordinary differential equation, which is akin to a mean flow. We show that the ordinary differential equation (ODE) has a unique equilibrium and that it is characterized as optimizing a concave utility function, which shows that PFS is not ad-hoc, but actually corresponds to a reasonable maximization problem. These results may be used to analyze the performance of PFS. The results depend on the fact that the mean ODE has a special form that arises in problems with certain types of competitive behavior. There is a large set of such algorithms, each one corresponding to a concave utility function. This set allows a choice of tradeoffs between the current rate and throughout. Extensions to multiple antenna and frequency systems are given. Finally, the infinite backlog assumption is dropped and the data is allowed to arrive at random. This complicates the analysis, but the same results hold.
  • Keywords
    antenna arrays; approximation theory; convergence of numerical methods; difference equations; mobile communication; optimisation; radio transmitters; scheduling; stochastic processes; time-varying channels; base station transmitter; concave utility function; convergence; monotone systems; multiple antenna systems; optimization; ordinary differential equation; proportional-fair sharing algorithm; qualcomm high data rate system; scheduling intervals; stochastic approximation; time-varying mobile communications; Algorithm design and analysis; Base stations; Convergence; Differential equations; Information analysis; Mobile communication; Scheduling algorithm; Stochastic processes; Throughput; Transmitters; Monotone systems; PFS; proportional-fair sharing; stochastic approximation; time-varying channels;
  • fLanguage
    English
  • Journal_Title
    Wireless Communications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1536-1276
  • Type

    jour

  • DOI
    10.1109/TWC.2004.830826
  • Filename
    1310314