• DocumentCode
    1027707
  • Title

    Bounds on the extreme eigenvalues of positive-definite Toeplitz matrices

  • Author

    Dembo, A.

  • Author_Institution
    Dept. of Electr. Eng., Technion, Israel Inst. of Technol., Haifa, Israel
  • Volume
    34
  • Issue
    2
  • fYear
    1988
  • fDate
    3/1/1988 12:00:00 AM
  • Firstpage
    352
  • Lastpage
    355
  • Abstract
    Easily computable bounds on the extreme eigenvalues of positive semidefinite (PSD) Toeplitz matrices are presented. The bounds are especially suitable for matrices of relatively small dimension. The bounds are derived for the wider class of PSD Hermitian matrices and interpreted via the Levinson-Durbin Algorithm for Toeplitz matrices. As a by-product of this derivation an order-recursive algorithm for the eigenvector/eigenvalue decomposition is obtained, and certain properties of the eigenvalues distribution are revealed
  • Keywords
    eigenvalues and eigenfunctions; matrix algebra; Hermitian matrices; Levinson-Durbin Algorithm; bounds; eigenvector/eigenvalue decomposition; extreme eigenvalues; order-recursive algorithm; positive-definite Toeplitz matrices; Amplitude modulation; Artificial intelligence; Eigenvalues and eigenfunctions; Linear discriminant analysis; Matrix decomposition; Sequential analysis; Symmetric matrices; Upper bound;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.2651
  • Filename
    2651