DocumentCode :
1032320
Title :
Interframe dependent hidden Markov model for speech recognition
Author :
Ming, Ji ; Smith, F.J.
Author_Institution :
Dept. of Comput. Sci., Queen´s Univ., Belfast
Volume :
30
Issue :
3
fYear :
1994
fDate :
2/3/1994 12:00:00 AM
Firstpage :
188
Lastpage :
189
Abstract :
A hidden Markov model (HMM) with first-order dependent observation densities is presented to account for the statistical dependence between successive frames. A modified Viterbi algorithm is described to optimise jointly the state sequence and dependence relation for the model parameter estimation as well as likelihood calculation. Preliminary experiments show that this approach achieves better performance than the standard multivariate Gaussian HMM
Keywords :
hidden Markov models; parameter estimation; probability; speech recognition; HMM; dependence relation; first-order dependent observation densities; hidden Markov model; interframe dependent model; likelihood calculation; model parameter estimation; modified Viterbi algorithm; speech recognition; state sequence; statistical dependence;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19940134
Filename :
267254
Link To Document :
بازگشت