DocumentCode :
1032430
Title :
The Backus-Gilbert inversion method and the processing of sampled data
Author :
Caccin, B. ; Roberti, C. ; Russo, P. ; Smaldone, L.A.
Author_Institution :
Dipartimento di Fisica, Roma Univ., Italy
Volume :
40
Issue :
11
fYear :
1992
fDate :
11/1/1992 12:00:00 AM
Firstpage :
2823
Lastpage :
2825
Abstract :
The Backus-Gilbert (BG) method, an inversion method for solving integral equations, is treated. It is shown that, given a set of idealized δ-function kernels in the BG formalism, it is possible to derive an interpolation formula for a bandlimited function that very closely compares to the perfect interpolation formula given by the Shannon theorem
Keywords :
frequency-domain analysis; integral equations; interpolation; sampled data systems; signal processing; Backus-Gilbert inversion method; bandlimited function; frequency-domain analysis; idealized δ-function kernels; integral equations; interpolation formula; sampled data processing; signal processing; Geoscience; Integral equations; Interpolation; Kernel; Narrowband; Physics; Sampling methods; Shape control; Signal processing; Terrestrial atmosphere;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.165672
Filename :
165672
Link To Document :
بازگشت