• DocumentCode
    1033765
  • Title

    Sequential Monte Carlo Methods for Tracking Multiple Targets With Deterministic and Stochastic Constraints

  • Author

    Kyriakides, Ioannis ; Morrell, Darryl ; Papandreou-Suppappola, Antonia

  • Author_Institution
    Arizona State Univ., Tempe
  • Volume
    56
  • Issue
    3
  • fYear
    2008
  • fDate
    3/1/2008 12:00:00 AM
  • Firstpage
    937
  • Lastpage
    948
  • Abstract
    In multitarget scenarios, kinematic constraints from the interaction of targets with their environment or other targets can restrict target motion. Such motion constraint information could improve tracking performance if effectively used by the tracker. In this paper, we propose three particle filtering methods that incorporate constraint information in their proposal and weighting process; the number of targets is fixed and known in all methods. The reproposed constrained motion proposal (RCOMP) utilizes an accept/reject method to propose particles that meet the constraints. The truncated constraint motion proposal (TCOMP) uses proposal densities truncated to satisfy the constraints. The constraint likelihood independent partitions (CLIP) method simply rejects proposed partitions that do not meet the constraints. We use simulation to evaluate the performance of these three methods for two constrained motion scenarios: a vehicle convoy and soldiers executing a leapfrog motion. Moreover, we demonstrate the utility of constraint information by comparing the proposed algorithms with the independent partition (IP) proposal method that does not use constraint information. The simulation results demonstrate that the root mean square error (RMSE) tracking performance of the RCOMP and the TCOMP methods is much better than the CLIP and IP methods; this is due to their more efficient proposal process.
  • Keywords
    Monte Carlo methods; mean square error methods; particle filtering (numerical methods); stochastic processes; target tracking; constraint likelihood independent partitions method; deterministic constraints; multiple target tracking; reproposed constrained motion proposal; root mean square error; sequential Monte Carlo methods; stochastic constraints; truncated constraint motion proposal; Constrained target motion; Monte Carlo methods; efficient proposal processes; multiple target tracking; particle filtering;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2007.908931
  • Filename
    4430009