DocumentCode :
1038468
Title :
SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems
Author :
Sánchez-Fernandez, Matilde ; De-Prado-Cumplido, Mario ; Arenas-Garcia, Jerónimo ; Pérez-Cruz, Fernando
Author_Institution :
Dept. Teoria de la Senal y Comunicaciones, Univ. Carlos de Madrid, Leganes-Madrid, Spain
Volume :
52
Issue :
8
fYear :
2004
Firstpage :
2298
Lastpage :
2307
Abstract :
This paper addresses the problem of multiple-input multiple-output (MIMO) frequency nonselective channel estimation. We develop a new method for multiple variable regression estimation based on Support Vector Machines (SVMs): a state-of-the-art technique within the machine learning community for regression estimation. We show how this new method, which we call M-SVR, can be efficiently applied. The proposed regression method is evaluated in a MIMO system under a channel estimation scenario, showing its benefits in comparison to previous proposals when nonlinearities are present in either the transmitter or the receiver sides of the MIMO system.
Keywords :
MIMO systems; channel estimation; computational complexity; error statistics; learning (artificial intelligence); nonlinear systems; regression analysis; support vector machines; telecommunication computing; SVM multiregression estimation; bit error rate; computational complexity; machine learning; multiple-input multiple-output systems; nonlinear channel estimation; support vector machines; Bit error rate; Channel estimation; Fading; Frequency estimation; Intersymbol interference; MIMO; Maximum likelihood estimation; State estimation; Support vector machine classification; Support vector machines; Channel estimation; MIMO systems; multivariate regression; support vector machine;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2004.831028
Filename :
1315948
Link To Document :
بازگشت