Author_Institution :
Dept. of Comput. Sci., City Univ. of Hong Kong, Kowloon, China
Abstract :
In cloud computing, a provider leases its computing resources in the form of virtual machines to users, and a price is charged for the period they are used. Though static pricing is the dominant pricing strategy in today´s market, intuitively price ought to be dynamically updated to improve revenue. The fundamental challenge is to design an optimal dynamic pricing policy, with the presence of stochastic demand and perishable resources, so that the expected long-term revenue is maximized. In this paper, we make three contributions in addressing this question. First, we conduct an empirical study of the spot price history of Amazon, and find that surprisingly, the spot price is unlikely to be set according to market demand. This has important implications on understanding the current market, and motivates us to develop and analyze market-driven dynamic pricing mechanisms. Second, we adopt a revenue management framework from economics, and formulate the revenue maximization problem with dynamic pricing as a stochastic dynamic program. We characterize its optimality conditions, and prove important structural results. Finally, we extend to consider a nonhomogeneous demand model.
Keywords :
cloud computing; dynamic programming; pricing; stochastic programming; virtual machines; AmazonV spot price history; cloud computing; dynamic cloud pricing; market-driven dynamic pricing mechanisms; nonhomogeneous demand model; perishable resources; revenue management framework; revenue maximization; static pricing; stochastic demand; stochastic dynamic program; virtual machines; Analytical models; Cloud computing; Cost accounting; Numerical models; Pricing; Stochastic processes; Dynamic pricing; cloud computing; dynamic programming; public cloud; revenue maximization; spot market;