• DocumentCode
    104994
  • Title

    Modeling of Speaking Rate Influences on Mandarin Speech Prosody and Its Application to Speaking Rate-controlled TTS

  • Author

    Sin-Horng Chen ; Chiao-Hua Hsieh ; Chen-Yu Chiang ; Hsi-Chun Hsiao ; Yih-Ru Wang ; Yuan-Fu Liao ; Hsiu-Min Yu

  • Author_Institution
    Dept. of Electr. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
  • Volume
    22
  • Issue
    7
  • fYear
    2014
  • fDate
    Jul-14
  • Firstpage
    1158
  • Lastpage
    1171
  • Abstract
    A new data-driven approach to building a speaking rate-dependent hierarchical prosodic model (SR-HPM), directly from a large prosody-unlabeled speech database containing utterances of various speaking rates, to describe the influences of speaking rate on Mandarin speech prosody is proposed. It is an extended version of the existing HPM model which contains 12 sub-models to describe various relationships of prosodic-acoustic features of speech signal, linguistic features of the associated text, and prosodic tags representing the prosodic structure of speech. Two main modifications are suggested. One is designing proper normalization functions from the statistics of the whole database to compensate the influences of speaking rate on all prosodic-acoustic features. Another is modifying the HPM training to let its parameters be speaking-rate dependent. Experimental results on a large Mandarin read speech corpus showed that the parameters of the SR-HPM together with these feature normalization functions interpreted the effects of speaking rate on Mandarin speech prosody very well. An application of the SR-HPM to design and implement a speaking rate-controlled Mandarin TTS system is demonstrated. The system can generate natural synthetic speech for any given speaking rate in a wide range of 3.4-6.8 syllables/sec. Two subjective tests, MOS and preference test, were conducted to compare the proposed system with the popular HTS system. The MOS scores of the proposed system were in the range of 3.58-3.83 for eight different speaking rates, while they were in 3.09-3.43 for HTS. Besides, the proposed system had higher preference scores (49.8%-79.6%) than those (9.8%-30.7%) of HTS. This confirmed the effectiveness of the speaking rate control method of the proposed TTS system.
  • Keywords
    speech processing; speech synthesis; HTS system; MOS scores; Mandarin speech prosody; SR-HPM; modeling; natural synthetic speech; normalization functions; prosodic structure; prosodic tags; prosodic-acoustic features; prosody-unlabeled speech database; speaking rate control method; speaking rate-controlled Mandarin TTS system; speaking rate-dependent hierarchical prosodic model; speech signal; statistics; utterances; Databases; IEEE transactions; Pragmatics; Speech; Speech processing; Standards; Training; Mandarin prosody modeling; speaking rate modeling; speaking rate-controlled TTS;
  • fLanguage
    English
  • Journal_Title
    Audio, Speech, and Language Processing, IEEE/ACM Transactions on
  • Publisher
    ieee
  • ISSN
    2329-9290
  • Type

    jour

  • DOI
    10.1109/TASLP.2014.2321482
  • Filename
    6809996