• DocumentCode
    10505
  • Title

    Fuzzy Classifiers Tuning Through an Adaptive Memetic Algorithm

  • Author

    Murcia, Cristhian ; Bonilla, G. ; Melgarejo, Miguel

  • Author_Institution
    Univ. Distrital Francisco Jose de Caldas, Bogota, Colombia
  • Volume
    12
  • Issue
    2
  • fYear
    2014
  • fDate
    Mar-14
  • Firstpage
    197
  • Lastpage
    204
  • Abstract
    This paper presents a methodological approach for tuning the fuzzy rules of a fuzzy classifier using an adaptive memetic algorithm. The approach is validated over two benchmark problems in terms of classification error and computational effort. In addition, it compares the performance of memetic, genetic and adaptive memetic algorithms over the benchmark problems. These results show a favorable trend towards the tuning of the classifiers through the adaptive memetic perspective.
  • Keywords
    fuzzy set theory; genetic algorithms; pattern classification; adaptive memetic algorithm; adaptive memetic perspective; classification error; computational effort; fuzzy classifiers tuning; genetic algorithm; methodological approach; Benchmark testing; Breast cancer; Classification algorithms; Fuzzy logic; Media; Memetics; Tuning; Adaptative; Breast Cancer; Classifiers; Fuzzy Systems; Hyiperheuristic; Memetic Algorithm; Wine; local improvement; tuning;
  • fLanguage
    English
  • Journal_Title
    Latin America Transactions, IEEE (Revista IEEE America Latina)
  • Publisher
    ieee
  • ISSN
    1548-0992
  • Type

    jour

  • DOI
    10.1109/TLA.2014.6749538
  • Filename
    6749538