• DocumentCode
    1054232
  • Title

    Cooperative strategy based on adaptive Q-learning for robot soccer systems

  • Author

    Hwang, Kao-Shing ; Tan, Shun-Wen ; Chen, Chien-Cheng

  • Author_Institution
    Electr. Eng. Dept., Nat. Chung Cheng Univ., Chia-Yi, Taiwan
  • Volume
    12
  • Issue
    4
  • fYear
    2004
  • Firstpage
    569
  • Lastpage
    576
  • Abstract
    The objective of this paper is to develop a self-learning cooperative strategy for robot soccer systems. The strategy enables robots to cooperate and coordinate with each other to achieve the objectives of offense and defense. Through the mechanism of learning, the robots can learn from experiences in either successes or failures, and utilize these experiences to improve the performance gradually. The cooperative strategy is built using a hierarchical architecture. The first layer of the structure is responsible for assigning each role, that is, how many defenders and sidekicks should be played according to the positional states. The second layer is for the role assignment related to the decision from the previous layer. We develop two algorithms for assignment of the roles, the attacker, the defenders, and the sidekicks. The last layer is the behavior layer in which robots execute their behavior commands and tasks based on their roles. The attacker is responsible for chasing the ball and attacking. The sidekicks are responsible for finding good positions, and the defenders are responsible for defending competitor scoring. The robots´ roles are not fixed. They can dynamically exchange their roles with each other. In the aspect of learning, we develop an adaptive Q-learning method which is modified form the traditional Q-learning. A simple ant experiment shows that Q-learning is more effective than the traditional techniques, and it is also successfully applied to the learning of the cooperative strategy.
  • Keywords
    learning (artificial intelligence); mobile robots; multi-agent systems; multi-robot systems; adaptive Q-learning; robot soccer systems; self-learning cooperative strategy; Acceleration; Boltzmann distribution; Convergence; Distribution functions; Learning systems; Mechatronics; Robot control; Stability; Temperature distribution; $Q$-learning; Cooperation and coordination; cooperative strategy; robot soccer;
  • fLanguage
    English
  • Journal_Title
    Fuzzy Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1063-6706
  • Type

    jour

  • DOI
    10.1109/TFUZZ.2004.832523
  • Filename
    1321086