• DocumentCode
    105545
  • Title

    Estimating Visual Saliency Through Single Image Optimization

  • Author

    Jia Li ; Yonghong Tian ; Lingyu Duan ; Tiejun Huang

  • Author_Institution
    Nat. Eng. Lab. for Video Technol., Peking Univ., Beijing, China
  • Volume
    20
  • Issue
    9
  • fYear
    2013
  • fDate
    Sept. 2013
  • Firstpage
    845
  • Lastpage
    848
  • Abstract
    This letter presents a novel approach for visual saliency estimation through single image optimization. Instead of directly mapping visual features to saliency values with a unified model, we treat regional saliency values as the optimization objective on each single image. By using a quadratic programming framework, our approach can adaptively optimize the regional saliency values on each specific image to simultaneously meet multiple saliency hypotheses on visual rarity, center-bias and mutual correlation. Experimental results show that our approach can outperform 14 state-of-the-art approaches on a public image benchmark.
  • Keywords
    image processing; quadratic programming; multiple saliency hypotheses; mutual correlation; public image benchmark; quadratic programming framework; regional saliency values; single image optimization; visual features; visual saliency; Benchmark testing; Correlation; Estimation; Feature extraction; Optimization; Reliability; Visualization; Quadratic programming; single image optimization; visual saliency;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2013.2268868
  • Filename
    6532298