• DocumentCode
    1055767
  • Title

    DCRVQ: a new strategy for efficient entropy coding of vector-quantized images

  • Author

    De Natale, Francesco G B ; Fioravanti, Stefano ; Giusto, Daniele D.

  • Author_Institution
    Dept. of Biophys. & Electr. Eng., Genova Univ., Italy
  • Volume
    44
  • Issue
    6
  • fYear
    1996
  • fDate
    6/1/1996 12:00:00 AM
  • Firstpage
    696
  • Lastpage
    706
  • Abstract
    This paper presents a novel predictive coding scheme for image-data compression by vector quantization (VQ). On the basis of a prediction, further compression is achieved by using a dynamic codebook-reordering strategy that allows a more efficient Huffman encoding of vector addresses. The proposed method is lossless, for it increases the compression performances of a baseline vector quantization scheme, without causing any further image degradation. Results are presented and a comparison with Cache-VQ is made
  • Keywords
    Huffman codes; entropy codes; image coding; prediction theory; vector quantisation; Cache-VQ; DCRVQ; Huffman encoding; compression performance; dynamic codebook reordering VQ; entropy coding; image data compression; lossless coding method; neural approach; predictive coding; vector addresses; vector quantized images; Data compression; Degradation; Encoding; Entropy coding; Image coding; Mean square error methods; Multidimensional systems; Pixel; Predictive coding; Vector quantization;
  • fLanguage
    English
  • Journal_Title
    Communications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0090-6778
  • Type

    jour

  • DOI
    10.1109/26.506386
  • Filename
    506386