DocumentCode :
1060789
Title :
Optimal Conditions for Micromachining Si1 − xGex at 210 °C
Author :
Sedky, Sherif ; Bayoumy, Ahmed ; Alaa, Ahmed ; Nagy, Ahmed ; Witvrouw, Ann
Author_Institution :
American Univ., Cairo
Volume :
16
Issue :
3
fYear :
2007
fDate :
6/1/2007 12:00:00 AM
Firstpage :
581
Lastpage :
588
Abstract :
This paper investigates the possibility of reducing the deposition temperature of silicon-germanium (Si1-xGex) thin films to 210degC and tuning the physical properties of the film locally to achieve optimal mechanical and electrical properties that are suitable for a wide range of microelectromechanical systems that can be postprocessed on top of standard prefabricated electronics or onto more exotic substrates, such as polymer films. First, the effect of the Ge content, layer thickness, and deposition pressure on the mechanical properties of as-deposited Si1-xGex films, which are deposited at 210degC, is analyzed in detail, and the optimal deposition conditions are experimentally determined. Then, the possibility of using pulsed excimer laser annealing to control the electrical and mechanical properties of such films is demonstrated. It is shown that the low deposition temperature imposes many constraints on the laser-annealing conditions, particularly for optimizing the mechanical properties. Moreover, the Ge content and the film thickness have a significant influence on the optimal laser-annealing conditions. It is illustrated that eliminating stress gradient implies very shallow crystallization, which is accompanied by relatively high electrical resistivity. Using the optimal laser-annealing conditions, the stress gradient can be as low as 1 times 10-6 mum-1 for a 0.3-mum-thick film. The optimal electrical resistivity, on the other hand, depends on the Ge content. For 70% Ge, the minimum resistivity is 80 mOmega ldr cm; decreasing the Ge content to 30% results in a resistivity of 3 Omega ldr cm.
Keywords :
CVD coatings; Ge-Si alloys; crystallisation; electrical resistivity; laser beam annealing; micromachining; micromechanical devices; semiconductor materials; semiconductor thin films; stress analysis; MEMS; Si1-xGex - Binary; deposition pressure; electrical resistivity; film deposition temperature; microelectromechanical systems; micromachining; optimal deposition conditions; optimal electrical resistivity; optimal laser-annealing conditions; optimal mechanical properties; polymer films; pulsed excimer laser annealing; shallow crystallization; silicon-germanium thin films; size 0.3 mum; standard prefabricated electronics; stress gradients; temperature 210 degC; thin film physical properties; Conductivity; Electric resistance; Germanium silicon alloys; Mechanical factors; Micromachining; Polymer films; Pulsed laser deposition; Semiconductor films; Stress; Temperature distribution; Laser annealing; silicon compounds; stress control;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/JMEMS.2007.896703
Filename :
4276819
Link To Document :
بازگشت