• DocumentCode
    10628
  • Title

    Correction of Atmospheric Phase Screen in Time Series InSAR Using WRF Model for Monitoring Volcanic Activities

  • Author

    Jungkyo Jung ; Duk-jin Kim ; Sang-Eun Park

  • Author_Institution
    Sch. of Earth & Environ. Sci., Seoul Nat. Univ., Seoul, South Korea
  • Volume
    52
  • Issue
    5
  • fYear
    2014
  • fDate
    May-14
  • Firstpage
    2678
  • Lastpage
    2689
  • Abstract
    One of the main limitations in measuring ground deformation using synthetic aperture radar interferometry (InSAR) is atmospheric phase delay effects. In volcanic regions, the atmospheric phase delay effects can cause serious problems in detecting volcanic unrest because atmospheric thickness is inversely related with the elevation of a volcanic mountain. It is commonly known that the atmospheric phase screen (APS) can be decomposed spatially into stratified and turbulent components. In this paper, the stratified and turbulent atmospheric conditions of a volcanic area were simulated using weather research and forecasting (WRF) model, and the simulated atmospheric conditions were compared with in situ radiosonde data. The comparison results proved that the stratified APS from the WRF model could reflect the reasonable patterns of seasonal changes and vertical profiles with dependable quality. We also found that the stratified APS was significantly correlated with time and sometimes severely contaminated the quality of volcanic deformation estimation. These results indicate that the temporal high-pass (HP) filtering, which has been usually applied in time series InSAR analysis for extracting and removing APS, cannot work properly in volcanic area. Thus, we propose a new method that employs the stratified APS obtained from the WRF model by correlating with topography and the (residual) turbulent APS that can be effectively eliminated by temporal HP filtering in persistent scatterer interferometry (PSI). We applied the proposed method (atmosphere-corrected PSI) to Advanced Land Observing Satellite Phased Array type L-band SAR data that cover Shinmoedake volcano, Japan, and found that the estimated surface deformation and APS agreed well with those measured from GPS and Moderate-Resolution Imaging Spectroradiometer data, respectively.
  • Keywords
    Global Positioning System; atmospheric optics; geophysical signal processing; radar interferometry; remote sensing by radar; synthetic aperture radar; time series; topography (Earth); volcanology; ALOS PALSAR data; Advanced Land Observing Satellite Phased Array type L-band SAR data; GPS data; InSAR; Japan; Moderate Resolution Imaging Spectroradiometer data; Shinmoedake volcano; WRF model; atmospheric phase delay effects; atmospheric phase screen correction; atmospheric thickness; ground deformation; high pass filtering; persistent scatterer interferometry; radiosonde data; synthetic aperture radar interferometry; time series; topography; volcanic activities monitoring; volcanic deformation estimation; weather research and forecasting model; Atmospheric phase screen (APS); stratified APS; time series interferometric synthetic aperture radar (InSAR); volcano; weather research and forecasting (WRF);
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0196-2892
  • Type

    jour

  • DOI
    10.1109/TGRS.2013.2264532
  • Filename
    6547675