DocumentCode :
1063466
Title :
Wiener-System Subspace Identification for Mobile Wireless mm-Wave Networks
Author :
Galvão, Roberto Kawakami Harrop ; Hadjiloucas, Sillas ; Izhac, Abdurrahman ; Becerra, Victor M. ; Bowen, John W.
Author_Institution :
Inst. Tecnol. de Aeronaut., Sao Paolo
Volume :
56
Issue :
4
fYear :
2007
fDate :
7/1/2007 12:00:00 AM
Firstpage :
1935
Lastpage :
1948
Abstract :
We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60,100,140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.
Keywords :
electromagnetic wave diffraction; fading channels; identification; millimetre wave propagation; mobile radio; multipath channels; regression analysis; Wiener-system subspace identification; autonomous dynamic linear system; diffraction; fading channel; mobile wireless mm-wave networks; multipath propagation; polynomial regression; static nonlinear mapping; wireless terahertz communications links; Atmospheric modeling; Diffraction; Fading; Large-scale systems; Nonlinear dynamical systems; Reflection; Solid modeling; Submillimeter wave communication; Urban areas; Wireless communication; Communication systems; communication-system nonlinearities; communication-system planning;
fLanguage :
English
Journal_Title :
Vehicular Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9545
Type :
jour
DOI :
10.1109/TVT.2007.897250
Filename :
4277072
Link To Document :
بازگشت