DocumentCode :
1063862
Title :
Covariance matrix estimation and classification with limited training data
Author :
Hoffbeck, Joseph P. ; Landgrebe, David A.
Author_Institution :
AT&T Bell Labs., Whippany, NJ, USA
Volume :
18
Issue :
7
fYear :
1996
fDate :
7/1/1996 12:00:00 AM
Firstpage :
763
Lastpage :
767
Abstract :
A new covariance matrix estimator useful for designing classifiers with limited training data is developed. In experiments, this estimator achieved higher classification accuracy than the sample covariance matrix and common covariance matrix estimates. In about half of the experiments, it achieved higher accuracy than regularized discriminant analysis, but required much less computation
Keywords :
covariance matrices; maximum likelihood estimation; pattern classification; classification accuracy; classifiers; covariance matrix estimation; limited training data; Analysis of variance; Covariance matrix; Electronic mail; Euclidean distance; Impedance; Labeling; Maximum likelihood estimation; Parameter estimation; Remote sensing; Training data;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.506799
Filename :
506799
Link To Document :
بازگشت