• DocumentCode
    1068704
  • Title

    Illumination Sensing in LED Lighting Systems Based on Frequency-Division Multiplexing

  • Author

    Yang, Hongming ; Bergmans, JanW M. ; Schenk, Tim C W

  • Author_Institution
    Dept. of Electr. Eng., Eindhoven Univ. of Technol., Eindhoven, Netherlands
  • Volume
    57
  • Issue
    11
  • fYear
    2009
  • Firstpage
    4269
  • Lastpage
    4281
  • Abstract
    Recently, light emitting diode (LED) based illumination systems have attracted considerable research interest. Such systems normally consist of a large number of LEDs. In order to facilitate the control of such high-complexity system, a novel signal processing application, namely illumination sensing, is thus studied. In this paper, the system concept and research challenges of illumination sensing are presented. Thereafter, we investigate a frequency-division multiplexing (FDM) scheme to distinguish the signals from different LEDs, such that we are able to estimate the illuminances of all the LEDs simultaneously. Moreover, a filter bank sensor structure is proposed to study the key properties of the FDM scheme. Conditions on the design of the filter response are imposed for the ideal case without the existence of any frequency inaccuracy, as well as for the case with frequency inaccuracies. The maximum number of LEDs that can be supported for each case is also derived. In particular, it is shown that, among all the other considered functions, the use of the triangular function is able to give a better tradeoff between the number of LEDs that can be supported and the allowable clock inaccuracies within a practical range. Moreover, through numerical investigations, we show that many tens of LEDs can be supported for the considered system parameters. Remark on the low-cost implementations of the proposed sensor structure is also provided.
  • Keywords
    frequency division multiplexing; light emitting diodes; lighting; LED lighting system; filter bank sensor structure; frequency-division multiplexing; illumination sensing; sensor structure; triangular function; Filter bank; LED illumination; Nyquist-1 functions; frequency-division multiplexing; illumination sensing;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2009.2025091
  • Filename
    5071228