Title :
Geographic Gossip: Efficient Averaging for Sensor Networks
Author :
Dimakis, Alexandros D G ; Sarwate, Anand D. ; Wainwright, Martin J.
Author_Institution :
Univ. of California, Berkeley
fDate :
3/1/2008 12:00:00 AM
Abstract :
Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste of energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of n and radicn, respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy e using O((n1.5radiclogn) logisin-1) radio transmissions, which yields a radicn/ log n factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.
Keywords :
distributed algorithms; graph theory; protocols; telecommunication network routing; telecommunication network topology; wireless sensor networks; distributed computation; geographic gossip algorithm; geographic network routing; gossip protocols; network topology; random geometric graphs; realistic sensor network model; regular graphs; resampling method; wireless sensor networks; Computer networks; Distributed computing; Information analysis; Network topology; Robustness; Routing protocols; Signal processing algorithms; Solid modeling; Temperature sensors; Working environment noise; Aggregation problems; consensus problems; distributed signal processing; gossip algorithms; message-passing algorithms; random geometric graphs; sensor networks;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2007.908946