• DocumentCode
    107531
  • Title

    Simultaneous Dual-Band Wavelength-Swept Fiber Laser Based on Active Mode Locking

  • Author

    Hwi Don Lee ; Zhongping Chen ; Myung Yung Jeong ; Chang-Seok Kim

  • Author_Institution
    Dept. of Cogno-Mechatron. Eng., Pusan Nat. Univ., Busan, South Korea
  • Volume
    26
  • Issue
    2
  • fYear
    2014
  • fDate
    Jan.15, 2014
  • Firstpage
    190
  • Lastpage
    193
  • Abstract
    We report a simultaneous dual-band wavelength-swept laser based on the active mode locking method. By applying a single modulation signal, synchronized sweeping of two lasing-wavelengths is demonstrated without the use of a mechanical wavelength-selecting filter. Two free spectral ranges are independently controlled with a dual path-length configuration of a laser cavity. The static and dynamic performances of a dual-band wavelength-swept active mode locking fiber laser are characterized in both the time and wavelength regions. Two lasing wavelengths were swept simultaneously from 1263.0 to 1333.3 nm for the 1310 nm band and from 1493 to 1563.3 nm for the 1550 nm band. The application of a dual-band wavelength-swept fiber laser was also demonstrated with a dual-band optical coherence tomography imaging system.
  • Keywords
    fibre lasers; laser beam applications; laser cavity resonators; laser mode locking; optical filters; optical modulation; optical tomography; active mode locking method; dual path-length configuration; dual-band optical coherence tomography imaging system; dual-band wavelength-swept active mode locking fiber laser; dynamic performances; laser cavity; lasing-wavelengths; mechanical wavelength-selecting filter; simultaneous dual-band wavelength-swept fiber laser; single modulation signal; static performances; synchronized sweeping; wavelength 1263.0 nm to 1333.3 nm; wavelength 1310 nm; wavelength 1493 nm to 1563.3 nm; wavelength 1550 nm; wavelength regions; Cavity resonators; Dual band; Fiber lasers; Frequency modulation; Laser mode locking; Optical fibers; Fiber lasers; laser mode locking; optical imaging;
  • fLanguage
    English
  • Journal_Title
    Photonics Technology Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1041-1135
  • Type

    jour

  • DOI
    10.1109/LPT.2013.2291834
  • Filename
    6674061