DocumentCode :
1077579
Title :
Universal Models for the Exponential Distribution
Author :
Schmidt, Daniel F. ; Makalic, Enes
Author_Institution :
Centre for MEGA Epidemiology, Univ. of Melbourne, Carlton, VIC
Volume :
55
Issue :
7
fYear :
2009
fDate :
7/1/2009 12:00:00 AM
Firstpage :
3087
Lastpage :
3090
Abstract :
This paper considers the problem of constructing information theoretic universal models for data distributed according to the exponential distribution. The universal models examined include the sequential normalized maximum likelihood (SNML) code, conditional normalized maximum likelihood (CNML) code, the minimum message length (MML) code, and the Bayes mixture code (BMC). The CNML code yields a codelength identical to the Bayesian mixture code, and within O(1) of the MML codelength, with suitable data driven priors.
Keywords :
codes; exponential distribution; Bayes mixture code; conditional normalized maximum likelihood code; exponential distribution; information theoretic universal models; minimum message length code; sequential normalized maximum likelihood code; Australia; Bayesian methods; Distributed computing; Exponential distribution; Integral equations; Maximum likelihood estimation; Minimax techniques; Parametric statistics; Predictive models; Statistical distributions; Minimum description length (MDL); minimum message length (MML); universal models;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2009.2018331
Filename :
5075876
Link To Document :
بازگشت