DocumentCode :
1078578
Title :
Generalized Fermat-Mersenne number theoretic transform
Author :
Dimitrov, Vassil S. ; Cooklev, Todor V. ; Donevsky, Borislav D.
Author_Institution :
Plovdiv Univ., Bulgaria
Volume :
41
Issue :
2
fYear :
1994
fDate :
2/1/1994 12:00:00 AM
Firstpage :
133
Lastpage :
139
Abstract :
A generalization of the Fermat and Mersenne number transform is suggested. The transforms are defined over finite fields and rings. This paper establishes the conditions necessary for these numbers to be prime. The length of the transforms is a highly composite number. An algorithm for finding primitive roots of unity is also discussed. The proposed transforms are characterized by respectable combinations of transform length, dynamic range and computational efficiency and can be used for fast convolution of integer sequences
Keywords :
number theory; signal processing; transforms; Fermat-Mersenne number theoretic transform; computational efficiency; dynamic range; fast convolution; finite fields; finite rings; integer sequences; number theoretic transform; prime numbers; primitive roots; transform length; Arithmetic; Computational efficiency; Convolution; Decoding; Digital filters; Dynamic range; Fast Fourier transforms; Filtering; Galois fields; Image processing;
fLanguage :
English
Journal_Title :
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7130
Type :
jour
DOI :
10.1109/82.281844
Filename :
281844
Link To Document :
بازگشت