DocumentCode :
1085723
Title :
An Efficient and Deadlock-Free Network Reconfiguration Protocol
Author :
Lysne, Olav ; Ana, José Miguel Montan ; Flich, José ; Duato, José ; Pinkston, Timothy Mark ; Skeie, Tor
Author_Institution :
Dept. of Inf., Oslo Univ., Lysaker
Volume :
57
Issue :
6
fYear :
2008
fDate :
6/1/2008 12:00:00 AM
Firstpage :
762
Lastpage :
779
Abstract :
Component failures and planned component replacements cause changes in the topology and routing paths supplied by the interconnection network of a parallel processor system over time. Such changes may require the network to be reconfigured such that the existing routing function is replaced by one that enables packets to reach their intended destinations amid the changes. Efficient reconfiguration methods are desired which allow the network to function uninterruptedly over the course of the reconfiguration process while remaining free from deadlocking behavior. In this paper, we propose, evaluate, and prove the deadlock freedom of a new network reconfiguration protocol that overlaps various phases of "static" reconfiguration processes traditionally used in commercial and research systems to provide performance efficiency on par with that of recently proposed "dynamic" reconfiguration processes but without their complexity. Simulation results show that the proposed Overlapping Static Reconfiguration protocol can reduce reconfiguration time by up to 50 percent, reduce packet latency by several orders of magnitude, reduce packet dropping by an order of magnitude, and provide unhalted packet injection as compared to traditional static reconfiguration while allowing network throughput similar to dynamic reconfiguration.
Keywords :
multiprocessor interconnection networks; parallel processing; deadlock freedom; dynamic reconfiguration processes; interconnection network; network reconfiguration protocol; overlapping static reconfiguration protocol; parallel processor system; reduce packet latency; static reconfiguration processes; Computer Society; Delay; Fault tolerance; Multiprocessor interconnection networks; Network topology; Routing protocols; Switches; System recovery; Telecommunication network reliability; Throughput; I/O and Data Communications; Interconnections (Subsystems); Topology;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.2008.31
Filename :
4459311
Link To Document :
بازگشت