DocumentCode :
1099667
Title :
Quantifying Surface Reflectivity for Spaceborne Lidar via Two Independent Methods
Author :
Disney, Mathias I. ; Lewis, Philip E. ; Bouvet, Marc ; Prieto-Blanco, Ana ; Hancock, Steven
Author_Institution :
Dept. of Geogr., Univ. Coll. London, London, UK
Volume :
47
Issue :
9
fYear :
2009
Firstpage :
3262
Lastpage :
3271
Abstract :
Spaceborne differential absorption lidar has been proposed for accurate measurements of atmospheric CO2 (and surface properties). Lidar instruments typically observe the highest possible surface reflectance due to observing in the retroreflection direction (the so-called ldquohotspotrdquo) where viewed shadow is minimized. The range of observed reflectance will determine instrument dimensions and signal-to-noise ratio, but it is difficult to predict this range globally a priori. Two complementary methods are presented for estimating lidar reflectivity over a range of vegetated surface types. The first method simulates the expected response of a lidar instrument from multiangle multispectral reflectance data. The second method uses detailed 3-D vegetation structural models and Monte Carlo ray tracing to simulate the lidar signal. The simulations are used to validate the first method and assess the impact of possible instrument configurations. Both methods agree well and are robust to error in observations, with predicted lidar reflectivity (at 1570 and 2050 nm here) typically between 10% and 33% higher relative to off-nadir reflectance and ranging from 0.02 to ~ 0.7. We use the 3-D simulations to show that the impact of shifted on-off lidar pulses is not likely to be significant for accuracy of retrieved CO2, and we demonstrate that the 3-D simulation method is a flexible and powerful way of prototyping future spaceborne lidar missions.
Keywords :
Monte Carlo methods; atmospheric optics; carbon compounds; optical radar; reflectivity; remote sensing by laser beam; vegetation mapping; 3D vegetation structural models; CO2; Monte Carlo ray tracing; atmospheric carbon dioxide measurements; hotspot observations; lidar reflectivity estimation; lidar signal simulation; multiangle multispectral reflectance data; observed reflectance range; retroreflection direction observations; shifted on-off lidar pulse effects; spaceborne differential absorption lidar; surface properties; surface reflectivity quantification; vegetated surface types; 3-D modeling; Bidirectional reflectance distribution function (BRDF); hotspot; lidar; radiative transfer;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2009.2019268
Filename :
5109737
Link To Document :
بازگشت