DocumentCode
1107976
Title
Speaker-independent isolated word recognition using dynamic features of speech spectrum
Author
Furui, Sadaoki
Author_Institution
N.T.T., Midoricho, Musashino-shi, Tokyo, Japan.
Volume
34
Issue
1
fYear
1986
fDate
2/1/1986 12:00:00 AM
Firstpage
52
Lastpage
59
Abstract
This paper proposes a new isolated word recognition technique based on a combination of instantaneous and dynamic features of the speech spectrum. This technique is shown to be highly effective in speaker-independent speech recognition. Spoken utterances are represented by time sequences of cepstrum coefficients and energy. Regression coefficients for these time functions are extracted for every frame over an approximately 50 ms period. Time functions of regression coefficients extracted for cepstrum and energy are combined with time functions of the original cepstrum coefficients, and used with a staggered array DP matching algorithm to compare multiple templates and input speech. Speaker-independent isolated word recognition experiments using a vocabulary of 100 Japanese city names indicate that a recognition error rate of 2.4 percent can be obtained with this method. Using only the original cepstrum coefficients the error rate is 6.2 percent.
Keywords
Cepstrum; Cities and towns; Error analysis; Feature extraction; Humans; Interpolation; Polynomials; Speech analysis; Speech recognition; Vocabulary;
fLanguage
English
Journal_Title
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher
ieee
ISSN
0096-3518
Type
jour
DOI
10.1109/TASSP.1986.1164788
Filename
1164788
Link To Document