• DocumentCode
    1108728
  • Title

    On the evaluation of double square integral in the (s1, s2) complex biplane

  • Author

    Jury, E.I. ; Ruridant, T.Y.

  • Author_Institution
    University of Miami, Coral Gables, FL
  • Volume
    34
  • Issue
    3
  • fYear
    1986
  • fDate
    6/1/1986 12:00:00 AM
  • Firstpage
    630
  • Lastpage
    632
  • Abstract
    In this correspondence, a method of evaluating the double square integral \\int_{0}^{\\infty} \\int_{0}^{\\infty} [h(t_{1}, t_{2})]^{2} dt_{1} dt_{2} = {1 \\over (2\\pi j)^{2}} \\int_{-j \\infty}^{j \\infty} \\int_{-j \\infty}^{j \\infty} H(s_{1}, s_{2}) H(-s_{1}, -s_{2}) ds_{1} ds_{2} where h(t_{1}, t_{2}) = L^{-1} [H(s_{1}, s_{2})] is discussed. The method of evaluation is based on using the double bilinear transformation (DBT) s_{k} = (1 - z_{k})/(1 + z_{k}), k = 1, 2 to reduce the above complex integral to a double integral in the complex ( z_{1}, z_{2} ) bidisk, {\\infty \\atop {\\sum \\atop {m=0}}} {\\infty \\atop {\\sum \\atop {n=0}}} [a(m, n)]^{2} = {1 \\over (2{\\pi}j)^{2}} {\\oint \\atop {|z1| = 1}} {\\oint \\atop {|z2| = 1}} A(z_{1}, z_{2}) \\cdot A(Z_{1}^{-1}, Z_{2}^{-1}) frac{dz_{1}}{z_{1}}frac{dz_{1}}{z_{2}} . There exist several methods for evaluating the above double integral. In this correspondence, we mention one promising method. Also, a matrix method is proposed for applying the "DBT" to a quotient of two-dimensional (2-D) polynomials.
  • Keywords
    Digital filters; Energy conservation; Matrices; Polynomials; Quantization; Two dimensional displays;
  • fLanguage
    English
  • Journal_Title
    Acoustics, Speech and Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0096-3518
  • Type

    jour

  • DOI
    10.1109/TASSP.1986.1164862
  • Filename
    1164862