DocumentCode :
1111882
Title :
Robust Adaptive Observer Design for Uncertain Systems With Bounded Disturbances
Author :
Stepanyan, Vahram ; Hovakimyan, Naira
Author_Institution :
Virginia Polytech Inst. & State Univ., Blacksburg
Volume :
18
Issue :
5
fYear :
2007
Firstpage :
1392
Lastpage :
1403
Abstract :
This paper presents a robust adaptive observer design methodology for a class of uncertain nonlinear systems in the presence of time-varying unknown parameters with absolutely integrable derivatives, and nonvanishing disturbances. Using the universal approximation property of radial basis function (RBF) neural networks and the adaptive bounding technique, the developed observer achieves asymptotic convergence of state estimation error to zero, while ensuring boundedness of parameter errors. A comparative simulation study is presented by the end.
Keywords :
adaptive control; control system synthesis; neurocontrollers; nonlinear control systems; observers; radial basis function networks; robust control; time-varying systems; uncertain systems; adaptive bounding; asymptotic convergence; bounded disturbances; radial basis function neural network; robust adaptive observer design; state estimation; time-varying unknown parameters; uncertain nonlinear system; universal approximation property; Adaptive systems; Convergence; Design methodology; Neural networks; Nonlinear systems; Observers; Robustness; State estimation; Time varying systems; Uncertain systems; Adaptive bounding; asymptotic observers; nonlinear systems; radial basis functions (RBFs) approximation; Algorithms; Computer Simulation; Feedback; Models, Theoretical; Neural Networks (Computer); Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2007.895837
Filename :
4298134
Link To Document :
بازگشت