Title :
Three-dimensional reconstruction from projections with incomplete and noisy data by object estimation
Author :
Bresler, Yoram ; Macovski, Albert
Author_Institution :
Stanford University, Stanford, CA
fDate :
8/1/1987 12:00:00 AM
Abstract :
An estimation approach to three-dimensional reconstruction from parallel ray projections, with incomplete and very noisy data, is described. Using a stochastic dynamic model for an object of interest in a probed domain of known background density, the reconstruction problem is reformulated as a n onlinear state estimation problem. An approximate minimum mean square error globally optimal algorithm for the solution of this problem is presented. The algorithm, which is recursive in a hybrid frequency-space domain, operates directly on the Fourier transformed projection data, eliminating altogether the attempt to invert the projection integral equation. The simulation example considered in this paper demonstrates that good object estimates may be obtained with as few as five views in a limited sector of 90° and at a signal-to-noise ratio as low as 0 dB.
Keywords :
Acoustic noise; Computed tomography; Data acquisition; Helium; Image reconstruction; Integral equations; Mean square error methods; Signal to noise ratio; State estimation; Stochastic processes;
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
DOI :
10.1109/TASSP.1987.1165270