DocumentCode :
1118563
Title :
Fuzzy Regression Analysis by Support Vector Learning Approach
Author :
Hao, Pei-Yi ; Chiang, Jung-Hsien
Author_Institution :
Nat. Kaohsiung Univ. of Appl. Sci., Kaohsiung
Volume :
16
Issue :
2
fYear :
2008
fDate :
4/1/2008 12:00:00 AM
Firstpage :
428
Lastpage :
441
Abstract :
Support vector machines (SVMs) have been very successful in pattern classification and function approximation problems for crisp data. In this paper, we incorporate the concept of fuzzy set theory into the support vector regression machine. The parameters to be estimated in the SVM regression, such as the components within the weight vector and the bias term, are set to be the fuzzy numbers. This integration preserves the benefits of SVM regression model and fuzzy regression model and has been attempted to treat fuzzy nonlinear regression analysis. In contrast to previous fuzzy nonlinear regression models, the proposed algorithm is a model-free method in the sense that we do not have to assume the underlying model function. By using different kernel functions, we can construct different learning machines with arbitrary types of nonlinear regression functions. Moreover, the proposed method can achieve automatic accuracy control in the fuzzy regression analysis task. The upper bound on number of errors is controlled by the user-predefined parameters. Experimental results are then presented that indicate the performance of the proposed approach.
Keywords :
fuzzy set theory; regression analysis; support vector machines; fuzzy regression analysis; fuzzy set theory; nonlinear regression functions; support vector learning approach; support vector machines; user predefined parameters; Automatic control; Function approximation; Fuzzy set theory; Fuzzy sets; Kernel; Parameter estimation; Pattern classification; Regression analysis; Support vector machine classification; Support vector machines; Fuzzy modeling; fuzzy regression; quadratic programming; support vector machines (SVMs); support vector regression machines;
fLanguage :
English
Journal_Title :
Fuzzy Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6706
Type :
jour
DOI :
10.1109/TFUZZ.2007.896359
Filename :
4481146
Link To Document :
بازگشت