• DocumentCode
    112078
  • Title

    Compressive Spectral Estimation for Nonstationary Random Processes

  • Author

    Jung, Alexandra ; Taubock, G. ; Hlawatsch, Franz

  • Author_Institution
    Inst. of Telecommun., Vienna Univ. of Technol., Vienna, Austria
  • Volume
    59
  • Issue
    5
  • fYear
    2013
  • fDate
    May-13
  • Firstpage
    3117
  • Lastpage
    3138
  • Abstract
    Estimating the spectral characteristics of a nonstationary random process is an important but challenging task, which can be facilitated by exploiting structural properties of the process. In certain applications, the observed processes are underspread, i.e., their time and frequency correlations exhibit a reasonably fast decay, and approximately time-frequency sparse, i.e., a reasonably large percentage of the spectral values are small. For this class of processes, we propose a compressive estimator of the discrete Rihaczek spectrum (RS). This estimator combines a minimum variance unbiased estimator of the RS (which is a smoothed Rihaczek distribution using an appropriately designed smoothing kernel) with a compressed sensing technique that exploits the approximate time-frequency sparsity. As a result of the compression stage, the number of measurements required for good estimation performance can be significantly reduced. The measurements are values of the ambiguity function of the observed signal at randomly chosen time and frequency lag positions. We provide bounds on the mean-square estimation error of both the minimum variance unbiased RS estimator and the compressive RS estimator, and we demonstrate the performance of the compressive estimator by means of simulation results. The proposed compressive RS estimator can also be used for estimating other time-dependent spectra (e.g., the Wigner-Ville spectrum), since for an underspread process most spectra are almost equal.
  • Keywords
    cognitive radio; compressed sensing; Wigner-Ville spectrum; cognitive radio; compressed sensing technique; compressive RS estimator; compressive estimator; compressive spectral estimation; discrete Rihaczek spectrum; frequency lag positions; mean-square estimation error; minimum variance unbiased estimator; nonstationary random processes; smoothed Rihaczek distribution; time lag positions; time-frequency correlations; time-frequency sparsity; Correlation; Discrete Fourier transforms; Estimation; Image coding; Random processes; Time frequency analysis; Vectors; Basis pursuit; Rihaczek spectrum; Wigner–Ville spectrum; cognitive radio; compressed sensing; nonstationary random process; nonstationary spectral estimation; time-dependent power spectrum;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2012.2237475
  • Filename
    6401190