DocumentCode :
1121462
Title :
On Higher Order Approximations for Hermite–Gaussian Functions and Discrete Fractional Fourier Transforms
Author :
Candan, Çagatay
Author_Institution :
Middle East Tech. Univ., Ankara
Volume :
14
Issue :
10
fYear :
2007
Firstpage :
699
Lastpage :
702
Abstract :
Discrete equivalents of Hermite-Gaussian functions play a critical role in the definition of a discrete fractional Fourier transform. The discrete equivalents are typically calculated through the eigendecomposition of a commutator matrix. In this letter, we first characterize the space of DFT-commuting matrices and then construct matrices approximating the Hermite-Gaussian generating differential equation and use the matrices to accurately generate the discrete equivalents of Hermite-Gaussians.
Keywords :
Fourier transforms; Hermitian matrices; approximation theory; differential equations; Hermite-Gaussian function; differential equation; discrete fractional Fourier transform; Boundary conditions; Character generation; Difference equations; Differential equations; Discrete Fourier transforms; Fourier transforms; Image sampling; Kernel; Sampling methods; Transform coding; Commuting matrices; Hermite–Gaussian functions; fractional Fourier transforms;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2007.898354
Filename :
4303059
Link To Document :
بازگشت