DocumentCode :
1124409
Title :
On Optimally Combining Pieces of Information, with Application to Estimating 3-D Complex-Object Position from Range Data
Author :
Bolle, Ruud M. ; Cooper, David B.
Author_Institution :
AI Systems Group, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.
Issue :
5
fYear :
1986
Firstpage :
619
Lastpage :
638
Abstract :
New asymptotic methods are introduced that permit computationally simple Bayesian recognition and parameter estimation for many large data sets described by a combination of algebraic, geometric, and probabilistic models. The techniques introduced permit controlled decomposition of a large problem into small problems for separate parallel processing where maximum likelihood estimation or Bayesian estimation or recognition can be realized locally. These results can be combined to arrive at globally optimum estimation or recognition. The approach is applied to the maximum likelihood estimation of 3-D complex-object position. To this end, the surface of an object is modeled as a collection of patches of primitive quadrics, i.e., planar, cylindrical, and spherical patches, possibly augmented by boundary segments. The primitive surface-patch models are specified by geometric parameters, reflecting location, orientation, and dimension information. The object-position estimation is based on sets of range data points, each set associated with an object primitive. Probability density functions are introduced that model the generation of range measurement points. This entails the formulation of a noise mechanism in three-space accounting for inaccuracies in the 3-D measurements and possibly for inaccuracies in the 3-D modeling. We develop the necessary techniques for optimal local parameter estimation and primitive boundary or surface type recognition for each small patch of data, and then optimal combining of these inaccurate locally derived parameter estimates in order to arrive at roughly globally optimum object-position estimation.
Keywords :
Bayesian methods; Density measurement; Maximum likelihood estimation; Noise measurement; Parallel processing; Parameter estimation; Probability density function; Rough surfaces; Solid modeling; Three dimensional displays; 3-D quadric surfaces; 3-D range data; Artificial intelligence; asymptotic sufficient statistics; evidence integration; geometric object modeling; large sample estimation and recognition; maximum likelihood object-position estimation; optimally combining pieces of information; robot vision; shape and 3-D descriptions;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.1986.4767836
Filename :
4767836
Link To Document :
بازگشت