• DocumentCode
    1128043
  • Title

    Optimal Regularization Parameter Estimation for Spectral Regression Discriminant Analysis

  • Author

    Chen, Wei ; Shan, Caifeng ; De Haan, Gerard

  • Author_Institution
    Philips Res., Eindhoven, Netherlands
  • Volume
    19
  • Issue
    12
  • fYear
    2009
  • Firstpage
    1921
  • Lastpage
    1926
  • Abstract
    Spectral regression discriminant analysis (SRDA) is an efficient subspace learning method proposed recently. One important unsolved issue of SRDA is how to automatically determine an appropriate regularization parameter. In this letter, we present a method to estimate the optimal regularization parameter for SRDA. We test our method in different applications including head pose estimation, face recognition, and text categorization. Our extensive experiments evidently illustrate the effectiveness and efficiency of our approach.
  • Keywords
    face recognition; parameter estimation; pose estimation; principal component analysis; face recognition; head pose estimation; optimal regularization parameter estimation; spectral regression discriminant analysis; subspace learning; text categorization; Regularization parameter estimation; spectral regression discriminant analysis; subspace learning;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems for Video Technology, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1051-8215
  • Type

    jour

  • DOI
    10.1109/TCSVT.2009.2026953
  • Filename
    5159444