DocumentCode
1129282
Title
Wide-Aperture Digital VOR
Author
Palatnick, A.S.
Author_Institution
AIL, a Division of Cutler-Hammer
Issue
6
fYear
1978
Firstpage
853
Lastpage
865
Abstract
The very high frequency (VHF) omnirange has undergone a number of evolutionary changes in the past 30 years. Early measurements of large errors led to the development of the Doppler VHF omnidirectional irectioal range (VOR) and its use. Further developments have been the precision multilobe VOR and the precision Doppler VOR. Interest in area navigation has led to the desire for a VOR greatly superior to any so far developed. Specifically, the objectives of the improved VOR would be a system that would significantly reduce magnitude of siting errors, provide greater accuracy and use digital techniques to simplify processing. ssing. The wide-aperture digital VOR described herein has been developed to meet these objectives. Its design is based on the crossed-pair interferometer principle where eight such pairs are energized successively by a set of pulses and phase shifts. The time multiplexed signal, detected by the aircraft receiver, is processed and simple digital computations are performedto determine the angular coordinates. The performance improvements have been achieved by the combination of using a 275-ft antenna aperture, and the use of digital techniques to generate the ground-radiated navigational signals and to process them in the airborne processor. Field tests of the feasibility model indicate it is a high performance ance system, capable of achieving an order of magnitude improvement in both site error reduction and in accuracy compared to present VOR systems. The measured accuracies were 0.11-degree standard deviation.
Keywords
Aircraft navigation; Aperture antennas; FAA; Frequency conversion; Measurement standards; Phase shifting interferometry; Signal detection; Signal generators; Signal processing; System testing;
fLanguage
English
Journal_Title
Aerospace and Electronic Systems, IEEE Transactions on
Publisher
ieee
ISSN
0018-9251
Type
jour
DOI
10.1109/TAES.1978.308549
Filename
4102074
Link To Document