DocumentCode :
1129668
Title :
A Generic Framework for Constrained Optimization Using Genetic Algorithms
Author :
Venkatraman, Sangameswar ; Yen, Gary G.
Author_Institution :
Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA
Volume :
9
Issue :
4
fYear :
2005
Firstpage :
424
Lastpage :
435
Abstract :
In this paper, we propose a generic, two-phase framework for solving constrained optimization problems using genetic algorithms. In the first phase of the algorithm, the objective function is completely disregarded and the constrained optimization problem is treated as a constraint satisfaction problem. The genetic search is directed toward minimizing the constraint violation of the solutions and eventually finding a feasible solution. A linear rank-based approach is used to assign fitness values to the individuals. The solution with the least constraint violation is archived as the elite solution in the population. In the second phase, the simultaneous optimization of the objective function and the satisfaction of the constraints are treated as a biobjective optimization problem. We elaborate on how the constrained optimization problem requires a balance of exploration and exploitation under different problem scenarios and come to the conclusion that a nondominated ranking between the individuals will help the algorithm explore further, while the elitist scheme will facilitate in exploitation. We analyze the proposed algorithm under different problem scenarios using Test Case Generator-2 and demonstrate the proposed algorithm´s capability to perform well independent of various problem characteristics. In addition, the proposed algorithm performs competitively with the state-of-the-art constraint optimization algorithms on 11 test cases which were widely studied benchmark functions in literature.
Keywords :
constraint handling; genetic algorithms; operations research; biobjective optimization problem; constrained optimization problem; constrained satisfaction; constraint satisfaction problem; genetic algorithms; genetic search; least constraint violation; linear rank-based approach; two-phase framework; Algorithm design and analysis; Benchmark testing; Character generation; Constraint optimization; Cost function; Genetic algorithms; Interference constraints; Performance analysis; Performance evaluation; Production; Constrained optimization; constraint handling; genetic algorithm (GA); hyperheuristic;
fLanguage :
English
Journal_Title :
Evolutionary Computation, IEEE Transactions on
Publisher :
ieee
ISSN :
1089-778X
Type :
jour
DOI :
10.1109/TEVC.2005.846817
Filename :
1492389
Link To Document :
بازگشت