DocumentCode :
1134762
Title :
Denoising of Dynamic Contrast-Enhanced MR Images Using Dynamic Nonlocal Means
Author :
Gal, Yaniv ; Mehnert, Andrew J H ; Bradley, Andrew P. ; McMahon, Kerry ; Kennedy, Dominic ; Crozier, Stuart
Author_Institution :
Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, QLD, Australia
Volume :
29
Issue :
2
fYear :
2010
Firstpage :
302
Lastpage :
310
Abstract :
This paper presents a new algorithm for denoising dynamic contrast-enhanced (DCE) MR images. It is a novel variation on the nonlocal means (NLM) algorithm. The algorithm, called dynamic nonlocal means (DNLM), exploits the redundancy of information in the temporal sequence of images. Empirical evaluations of the performance of the DNLM algorithm relative to seven other denoising methods-simple Gaussian filtering, the original NLM algorithm, a trivial extension of NLM to include the temporal dimension, bilateral filtering, anisotropic diffusion filtering, wavelet adaptive multiscale products threshold, and traditional wavelet thresholding-are presented. The evaluations include quantitative evaluations using simulated data and real data (20 DCE-MRI data sets from routine clinical breast MRI examinations) as well as qualitative evaluations using the same real data (24 observers: 14 image/signal-processing specialists, 10 clinical breast MRI radiographers). The results of the quantitative evaluation using the simulated data show that the DNLM algorithm consistently yields the smallest MSE between the denoised image and its corresponding original noiseless version. The results of the quantitative evaluation using the real data provide evidence, at the ?? = 0.05 level of significance, that the DNLM algorithm yields the smallest MSE between the denoised image and its corresponding original noiseless version. The results of the qualitative evaluation provide evidence, at the ?? = 0.05 level of significance, that the DNLM algorithm performs visually better than all of the other algorithms. Collectively the qualitative and quantitative results suggest that the DNLM algorithm more effectively attenuates noise in DCE MR images than any of the other algorithms.
Keywords :
biomedical MRI; image denoising; medical image processing; wavelet transforms; DCE MR images; DNLM algorithm; Gaussian filtering; MR image denoising; anisotropic diffusion filtering; bilateral filtering; dynamic contrast enhanced MR images; dynamic nonlocal means algorithm; image time series; information redundancy; traditional wavelet thresholding; wavelet adaptive multiscale products threshold; Adaptive filters; Anisotropic magnetoresistance; Breast; Filtering algorithms; Heuristic algorithms; Magnetic resonance imaging; Noise level; Noise reduction; Performance evaluation; Radiography; Denoising; dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI); dynamic nonlocal means (DNLM); noise; nonlocal means; Algorithms; Breast; Computer Simulation; Contrast Media; Female; Humans; Image Enhancement; Magnetic Resonance Imaging; Normal Distribution;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2009.2026575
Filename :
5165030
Link To Document :
بازگشت