• DocumentCode
    114657
  • Title

    Direct filter tuning and optimization in multivariable identification

  • Author

    Romano, Rodrigo Alvite ; Pait, Felipe

  • Author_Institution
    Escola de Eng. Maua, Inst. Maua de Tecnol., Sao Caetano do Sul, Brazil
  • fYear
    2014
  • fDate
    15-17 Dec. 2014
  • Firstpage
    1798
  • Lastpage
    1803
  • Abstract
    Identification of linear time-invariant multivariable systems can best be understood as comprising three separate problems: selection of system model structure, filter design, and parameter estimation itself. A previous contribution approaches the first using matchable-observable models originally developed in the adaptive control literature. This paper uses direct or derivative-free optimization to design filters. The accuracy, robustness and moderate computational demands of the methods is demonstrated via simulations with randomly generated models. The results obtained are comparable or superior to the best results obtained using standard implementations of the algorithms described in the literature.
  • Keywords
    adaptive control; linear systems; multivariable control systems; optimisation; parameter estimation; adaptive control literature; computational demands; derivative-free optimization; direct filter tuning; direct optimization; filter design; linear time-invariant multivariable system identification; matchable-observable models; model structure selection; parameter estimation; randomly generated models; standard implementations; Autoregressive processes; Computational modeling; Mathematical model; Observability; Optimization; Parameter estimation; Robustness;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on
  • Conference_Location
    Los Angeles, CA
  • Print_ISBN
    978-1-4799-7746-8
  • Type

    conf

  • DOI
    10.1109/CDC.2014.7039659
  • Filename
    7039659