DocumentCode :
1147741
Title :
Improving the Gilbert-Varshamov bound for q-ary codes
Author :
Vu, Van ; Wu, Lei
Author_Institution :
Dept. of Math., Univ. of California, La Jolla, CA, USA
Volume :
51
Issue :
9
fYear :
2005
Firstpage :
3200
Lastpage :
3208
Abstract :
Given positive integers q,n, and d, denote by Aq(n,d) the maximum size of a q-ary code of length n and minimum distance d. The famous Gilbert-Varshamov bound asserts that Aq(n,d+1)≥qn/Vq(n,d) where Vq(n,d)=Σi=0d (in)(q-1)i is the volume of a q-ary sphere of radius d. Extending a recent work of Jiang and Vardy on binary codes, we show that for any positive constant α less than (q-1)/q there is a positive constant c such that for d≤αn Aq(n,d+1)≥cqn/Vq(n,d)n. This confirms a conjecture by Jiang and Vardy.
Keywords :
binary codes; entropy codes; graph theory; Gilbert-Varshamov bound; binary code; entropy function; locally sparse graph; polynomial equivalence; positive integer; q-ary code length; Binary codes; Engineering profession; Entropy; H infinity control; Mathematics; Entropy function; Gilbert–Varshamov bound; independence number; locally sparse graphs; polynomial equivalence;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2005.853300
Filename :
1499052
Link To Document :
بازگشت