DocumentCode :
1155409
Title :
Using projections to visually cluster high-dimensional data
Author :
Hinneburg, Alexander ; Keim, Daniel ; Wawryniuk, Markus
Author_Institution :
Halle-Wittenberg Univ., Germany
Volume :
5
Issue :
2
fYear :
2003
Firstpage :
14
Lastpage :
25
Abstract :
The High-Dimensional Eye system proves that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques can help us better understand and effectively guide the clustering process, and thus significantly improve the clustering results.
Keywords :
data mining; data visualisation; data warehouses; pattern clustering; High-Dimensional Eye system; clustering algorithms; projections; visual high dimensional data clustering; visualization techniques; Application software; Clustering algorithms; Data mining; Data visualization; Machine learning; Multidimensional systems; Particle separators; Partitioning algorithms; Statistics; Visual databases;
fLanguage :
English
Journal_Title :
Computing in Science & Engineering
Publisher :
ieee
ISSN :
1521-9615
Type :
jour
DOI :
10.1109/MCISE.2003.1182958
Filename :
1182958
Link To Document :
بازگشت