• DocumentCode
    11580
  • Title

    Group Coding With Complex Isometries

  • Author

    Hye Jung Kim ; Nation, James B. ; Shepler, Anne V.

  • Author_Institution
    Math. & Sci., Kapiolani Community Coll., Honolulu, HI, USA
  • Volume
    61
  • Issue
    1
  • fYear
    2015
  • fDate
    Jan. 2015
  • Firstpage
    33
  • Lastpage
    50
  • Abstract
    We investigate group coding for arbitrary finite groups acting linearly on vector spaces. These yield robust codes based on real or complex matrix groups. We give necessary and sufficient conditions for correct subgroup decoding using geometric notions of minimal length coset representatives. The infinite family of complex reflection groups G(r, 1, n) produces effective codes of arbitrarily large size that can be decoded in relatively few steps.
  • Keywords
    decoding; geometric codes; group codes; matrix algebra; arbitrary finite group; complex isometry; complex matrix group; correct subgroup decoding; group coding; minimal length coset geometric notion; robust code; vector space; Decoding; Encoding; Noise; Orbits; Robustness; Space vehicles; Vectors; Group codes; group codes; reflection groups; subgroup decoding;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2014.2365020
  • Filename
    6936375