DocumentCode :
116012
Title :
Inverse covariance estimation from data with missing values using the Concave-Convex Procedure
Author :
Thai, Jerome ; Hunter, Timothy ; Akametalu, Anayo K. ; Tomlin, Claire J. ; Bayen, Alexandre M.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA
fYear :
2014
fDate :
15-17 Dec. 2014
Firstpage :
5736
Lastpage :
5742
Abstract :
We study the problem of estimating sparse precision matrices from data with missing values. We show that the corresponding maximum likelihood problem is a Difference of Convex (DC) program by proving some new concavity results on the Schur complements. We propose a new algorithm to solve this problem based on the ConCave-Convex Procedure (CCCP), and we show that the standard EM procedure is a weaker CCCP for this problem. Numerical experiments show that our new algorithm, called m-CCCP, converges much faster than EM on both synthetic and biology datasets.
Keywords :
covariance matrices; data handling; maximum likelihood estimation; EM procedure; Schur complements; biology dataset; concave-convex procedure; inverse covariance estimation; m-CCCP algorithm; maximum likelihood estimation; sparse precision matrix estimation; synthetic dataset; Approximation algorithms; Convergence; Covariance matrices; Linear programming; Optimization; Training; Tuning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on
Conference_Location :
Los Angeles, CA
Print_ISBN :
978-1-4799-7746-8
Type :
conf
DOI :
10.1109/CDC.2014.7040287
Filename :
7040287
Link To Document :
بازگشت