Title :
A digital signal processor with IEEE floating-point arithmetic
Author :
Sohie, Guy R L ; Kloker, Kevin L.
Author_Institution :
Motorola Inc., Austin, TX, USA
Abstract :
A overview is given of Motorola´s DSP96002, a digital signal processor that implements IEEE-standard floating-point arithmetic. It is designed for graphics, image processing, spectral analysis and scientific computing applications. Performance peaks at 40.5 Mflops (million floating-point operations per second) and 13.5 MIPS (million instructions per second) and 18 Mflops on assembly-language benchmarks. The DSP is software-compatible with the fixed-point 56000/1 family architecture and instruction set. The 96002 achieves compatibility with other processors and databases, higher mathematical accuracy, and better error handling than implementations that do not conform to the IEEE standard. The 96002´s on-chip memories, dual-bus architecture, and transparent DMA are suitable for multiprocessor systems in which many 96002s connect with minimum external components. These features result in a smaller-footprint, lower-cost system than other microprocessors or data-path chips. On-chip support for the fast access modes of external memories achieves near-SRAM (static random-access memory) performance with high-density DRAM/VRAM (dynamic RAM/virtual RAM) devices. An on-chip circuit emulation controller provides full access and control of the machine state for system debugging. A variety of software and hardware development tools support the 96002.<>
Keywords :
digital arithmetic; digital signal processing chips; 13.5 MIPS; 18 MFLOPS; 40.5 MFLOPS; IEEE floating-point arithmetic; Motorola DSP96002; assembly-language benchmarks; circuit emulation controller; databases; digital signal processor; dual-bus architecture; error handling; graphics; image processing; multiprocessor systems; scientific computing applications; spectral analysis; system debugging; transparent DMA; Application software; Control systems; Digital signal processors; Floating-point arithmetic; Graphics; Image processing; Random access memory; Scientific computing; Spectral analysis; System-on-a-chip;
Journal_Title :
Micro, IEEE