• DocumentCode
    11654
  • Title

    Dynamic Diffusion Estimation in Exponential Family Models

  • Author

    Dedecius, Kamil ; Seckarova, Vladimira

  • Author_Institution
    Inst. of Inf. Theor. & Autom., Prague, Czech Republic
  • Volume
    20
  • Issue
    11
  • fYear
    2013
  • fDate
    Nov. 2013
  • Firstpage
    1114
  • Lastpage
    1117
  • Abstract
    This letter proposes a new dynamic diffusion estimation method for a collaborative inference of a common model parameter using a distributed network of cooperating nodes. Unlike the existing single problem-oriented diffusion methods, it is formulated abstractly for the exponential family of models. The resulting advantage-its easy and straightforward application to the family members-is demonstrated on three selected cases: the diffusion autoregression, the diffusion Poisson modelling and the diffusion estimation of a Bernoulli process with unknown proportions. The first case is shown to coincide with the diffusion recursive least squares.
  • Keywords
    estimation theory; inference mechanisms; least squares approximations; parameter estimation; regression analysis; stochastic processes; Bernoulli process; collaborative inference; cooperating node; diffusion Poisson modelling; diffusion autoregression; diffusion recursive least square method; distributed network; dynamic diffusion estimation method; exponential family model; parameter estimation; single problem-oriented diffusion method; Abstracts; Adaptation models; Bayes methods; Estimation; Nickel; Probability density function; Signal processing algorithms; Diffusion estimation; distributed estimation; parameter estimation; sensor networks;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2013.2282042
  • Filename
    6601002