DocumentCode :
1174204
Title :
Synthesis of biconnected graphs
Author :
Boesch, F.T. ; Mchugh, J. A M
Volume :
21
Issue :
3
fYear :
1974
fDate :
5/1/1974 12:00:00 AM
Firstpage :
330
Lastpage :
334
Abstract :
In this investigation, it is necessary to distinguish pseudographs (self-loops and multiple lines allowed), multigraph (no self-loops but multiple lines are allowed), and graphs (neither self-loop nor multiple lines allowed). The problem of synthesizing graphs, multigraphs, and pseudographs having a prescribed degree sequence was solved by Hakimi. He also determined the conditions under which a connected realization exists in each of these three cases. The case of biconnected (nonseparable) realizations of a degree sequence was given by Hakimi for the case of pseudographs and multigraphs. His methods did not apply to the case of graphs. The triconnected case was solved by Rao and Rao for graphs; however, strangely enough, the biconnected case apparently remains unpublished. We shall show here that the biconnected case can be handled by a "surgery" technique similar in spirit to the connected case given by Hakimi. Several remarks concerning the general n -connected case for pseudographs, multigraphs, and graphs will be given. We conclude with a status report on this subject, which includes the most recent work of Hakimi, Wang and Kleitman, and Bondy.
Keywords :
Graph theory; Graph theory and network topology; Bonding; Circuit synthesis; Circuit theory; Helium; Hilbert space; Impedance; Minimization; Telephony; Terminology;
fLanguage :
English
Journal_Title :
Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0098-4094
Type :
jour
DOI :
10.1109/TCS.1974.1083872
Filename :
1083872
Link To Document :
بازگشت