Title :
The design of dual-mode complex signal processors based on quadratic modular number codes
Author :
Jenkins, W.K. ; Krogmeier, J.V.
fDate :
4/1/1987 12:00:00 AM
Abstract :
It has been known for a long time that quadratic modular number codes admit an unusual representation of complex numbers which leads to complete decoupling of the real and imaginary channels, thereby simplifying complex multiplication and providing error isolation between the real and imaginary channels. This paper first presents a tutorial review of the theory behind the different types of complex modular rings (fields) that result from particular parameter selections, and then presents a theory for a "dual-mode" complex signal processor based on the choice of augmented power-of-2 moduli. It is shown how a diminished-1 binary code, used by previous designers for the realization of Fermat number transforms, also leads to efficient realizations for dual-mode complex arithmetic for certain augmented power-of-2 moduli. Then a design is presented for a recursive complex filter based on a ROM/ACCUMULATOR architecture and realized in an augmented power-of-2 quadratic code, and a computergenerated example of a complex recursive filter is shown to illustrate the principles of the theory.
Keywords :
Residue arithmetic; Rings (algebraic); Signal processing; Special section on complex signal processing; Arithmetic; Binary codes; Computer architecture; Filtering theory; Filters; Power generation; Radar signal processing; Read only memory; Signal design; Signal processing;
Journal_Title :
Circuits and Systems, IEEE Transactions on
DOI :
10.1109/TCS.1987.1086154