DocumentCode :
1203554
Title :
An analysis of the block error probability performance of iterative decoding
Author :
Lentmaier, M. ; Truhachev, D.V. ; Zigangirov, K.S. ; Costello, D.J., Jr.
Author_Institution :
Dept. of Electr. Eng., Notre Dame Univ., IN, USA
Volume :
51
Issue :
11
fYear :
2005
Firstpage :
3834
Lastpage :
3855
Abstract :
Asymptotic iterative decoding performance is analyzed for several classes of iteratively decodable codes when the block length of the codes N and the number of iterations I go to infinity. Three classes of codes are considered. These are Gallager´s regular low-density parity-check (LDPC) codes, Tanner´s generalized LDPC (GLDPC) codes, and the turbo codes due to Berrou et al. It is proved that there exist codes in these classes and iterative decoding algorithms for these codes for which not only the bit error probability P/sub b/, but also the block (frame) error probability P/sub B/, goes to zero as N and I go to infinity.
Keywords :
convergence of numerical methods; error statistics; iterative decoding; parity check codes; turbo codes; LDPC; asymptotic iterative decoding; belief propagation; block error probability; convergence analysis; density evolution; generalized LDPC; low-density parity-check code; turbo code; Convergence; Error probability; H infinity control; Information theory; Iterative algorithms; Iterative decoding; Maximum likelihood decoding; Parity check codes; Performance analysis; Turbo codes; Belief propagation; block error probability; convergence analysis; density evolution; iterative decoding; low-density parity-check (LDPC) codes; turbo codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2005.856942
Filename :
1522644
Link To Document :
بازگشت