DocumentCode :
1210351
Title :
Design and implementation of a series voltage sag compensator under practical utility conditions
Author :
Cheng, Po-Tai ; Huang, Chian-Chung ; Pan, Chun-Chiang ; Bhattacharya, Subhashish
Author_Institution :
Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsin-Chu, Taiwan
Volume :
39
Issue :
3
fYear :
2003
Firstpage :
844
Lastpage :
853
Abstract :
Voltage sags have become one of the most important power quality concerns in recent years. According to survey results across the US, voltage sags and short-duration power outages account for 92% of power quality problems encountered by industrial customers. Voltage sags often cause undervoltage faults in various sensitive loads and subsequently interrupt the manufacturing processes. Such interruptions often inflict severe losses for industries. In Taiwan, ROC, most high-tech manufacturers use uninterruptible power supplies to avoid interruptions, but the cost effectiveness of such an approach remains unclear. As the utility grid continues to improve the reliability of electric power, the inverter-based voltage sag compensator has become a viable solution to prevent production interruptions resulting from voltage sags. The existing sag compensation systems accomplish a fast response within a small fraction of a fundamental cycle by tracking the line voltages closely, and switch on the compensator whenever the voltage waveforms deviate from the normal values. However, the utility voltages often contain transient spikes with amplitudes up to 200% resulting from switching of power-factor-correction capacitors, circuit breakers switchings, lightning strikes, and so on. Such transient disturbances may trigger the sag compensator into operation if its controller is very sensitive. The switching frequency of the sag compensator inverter is inadequate to compensate the narrow pulses of voltage spikes. Furthermore, the power semiconductor devices (like insulated gate bipolar transistors) of the inverter may also be damaged due to overvoltage by the surges. In this paper, a brief overview of power quality issues of a high-tech industry park in Taiwan is provided to validate the need for ride-through technologies. A synchronous-reference-frame-based controller for the inverter-based voltage sag compensator is also presented. A sag detection mechanism is included in the controller for correct and prompt identification of voltage sags. Disturbances like voltage spikes are attenuated to avoid any false triggering of the compensator. The overall system responds to voltage sags and restores the voltage back to balanced 1.0 pu for critical loads within one-eighth to one-fourt- h of a cycle, which meet the requirement of industry standards like the SEMI-F47 standard. Simulation and laboratory test results are presented to verify the functionality of the proposed system.
Keywords :
circuit breakers; compensation; invertors; power capacitors; power factor correction; power supply quality; power system faults; SEMI-F47 standard; Taiwan; circuit breakers switching; false triggering avoidance; high-tech manufacturers; industrial customers; insulated gate bipolar transistors; inverter-based voltage sag compensator; lightning strikes; line voltages tracking; manufacturing processes interruption; power quality problems; power semiconductor devices; power-factor-correction capacitors; ride-through technologies; sag compensator; sag compensator inverter; sag detection mechanism; sensitive loads; series voltage sag compensator; short-duration power outages; switching frequency; synchronous-reference-frame-based controller; transient disturbances; transient spikes; undervoltage faults; uninterruptible power supplies; utility conditions; voltage spikes; voltage waveforms; Circuit faults; Inverters; Manufacturing industries; Manufacturing processes; Power quality; Power semiconductor switches; Switching circuits; Uninterruptible power systems; Voltage control; Voltage fluctuations;
fLanguage :
English
Journal_Title :
Industry Applications, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-9994
Type :
jour
DOI :
10.1109/TIA.2003.811780
Filename :
1201554
Link To Document :
بازگشت