• DocumentCode
    12118
  • Title

    Interactive Multiscale Classification of High-Resolution Remote Sensing Images

  • Author

    dos Santos, Jefersson A. ; Gosselin, Philippe-Henri ; Philipp-Foliguet, Sylvie ; Da S Torres, Ricardo ; Xavier Falcao, Alexandre

  • Author_Institution
    Inst. of Comput., Univ. of Campinas, Campinas, Brazil
  • Volume
    6
  • Issue
    4
  • fYear
    2013
  • fDate
    Aug. 2013
  • Firstpage
    2020
  • Lastpage
    2034
  • Abstract
    The use of remote sensing images (RSIs) as a source of information in agribusiness applications is very common. In those applications, it is fundamental to identify and understand trends and patterns in space occupation. However, the identification and recognition of crop regions in remote sensing images are not trivial tasks yet. In high-resolution image analysis and recognition, many of the problems are related to the representation scale of the data, and to both the size and the representativeness of the training set. In this paper, we propose a method for interactive classification of remote sensing images considering multiscale segmentation. Our aim is to improve the selection of training samples using the features from the most appropriate scales of representation. We use a boosting-based active learning strategy to select regions at various scales for user´s relevance feedback. The idea is to select the regions that are closer to the border that separates both target classes: relevant and non-relevant regions. Experimental results showed that the combination of scales produces better results than isolated scales in a relevance feedback process. Furthermore, the interactive method achieved good results with few user interactions. The proposed method needs only a small portion of the training set to build classifiers that are as strong as the ones generated by a supervised method that uses the whole training set.
  • Keywords
    agriculture; crops; geophysical image processing; image classification; image representation; image resolution; image segmentation; interactive systems; learning (artificial intelligence); vegetation mapping; agribusiness application; boosting-based active learning strategy; crop region recognition; data representation scale; high-resolution image analysis; high-resolution remote sensing image; information source; interactive classification; interactive method; interactive multiscale classification; multiscale segmentation; pattern identification; region selection; space occupation; supervised method; trend identification; user interaction; user relevance feedback; Agriculture; Boosting; Buildings; Feature extraction; Image segmentation; Remote sensing; Training; Active learning; boosting; interactive classification; multiscale classification; support vector machines;
  • fLanguage
    English
  • Journal_Title
    Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
  • Publisher
    ieee
  • ISSN
    1939-1404
  • Type

    jour

  • DOI
    10.1109/JSTARS.2012.2237013
  • Filename
    6412736