DocumentCode :
1217677
Title :
The largest singular value of eXA0e -X is convex on convex sets of commuting matrices
Author :
Sezginer, Renan Sezer ; Overton, Michael L.
Author_Institution :
Courant Inst. of Math. Sci., New York Univ., NY, USA
Volume :
35
Issue :
2
fYear :
1990
fDate :
2/1/1990 12:00:00 AM
Firstpage :
229
Lastpage :
230
Abstract :
A short and direct proof of the convexity property is given. It is shown that the theorem applies to any convex, commuting set of matrices in RnXn, where A0RnXn is fixed. It is also shown that the result does not hold if X is permitted to be a general square matrix. A counterexample is supplied for noncommuting matrices
Keywords :
matrix algebra; optimisation; commuting matrices; convex sets; convexity property; general square matrix; largest singular value; matrix algebra; noncommuting matrices; optimisation; Adaptive control; Asymptotic stability; Automatic control; Differential equations; Feedback amplifiers; Gaussian processes; Network synthesis; Programmable control; Robust control; Uncertainty;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.45196
Filename :
45196
Link To Document :
بازگشت