DocumentCode :
1227070
Title :
Reduced polynomial order linear prediction
Author :
Dowling, Eric M. ; DeGroat, Ronald D. ; Linebarger, Darel A. ; Scharf, Louis L. ; Vis, Marvin
Author_Institution :
Erik Jonsson Sch. of Eng. & Comput. Sci., Texas Univ., Richardson, TX, USA
Volume :
3
Issue :
3
fYear :
1996
fDate :
3/1/1996 12:00:00 AM
Firstpage :
92
Lastpage :
94
Abstract :
Reduced rank linear predictive frequency and direction-of-arrival (DOA) estimation algorithms use the singular value decomposition (SVD) to produce a noise-cleaned linear prediction vector. These algorithms then root this vector to obtain a subset of roots, whose angles contain the desired frequency or DOA information. The roots closest to the unit circle are deemed to be the "signal roots". The rest of the roots are "extraneous". The extraneous roots are expensive to calculate. Further, a search must be done to discern the signal roots from the extraneous roots. Here, we present a reduced polynomial order linear prediction method that simplifies the rooting computation for applications where high-speed processing is critical.
Keywords :
direction-of-arrival estimation; frequency estimation; polynomials; prediction theory; singular value decomposition; DOA estimation algorithms; SVD; angles; direction-of-arrival estimation; extraneous roots; high speed processing; linear predictive frequency estimation; noise-cleaned linear prediction vector; reduced polynomial order linear prediction; rooting computation; signal roots; singular value decomposition; unit circle; Data models; Direction of arrival estimation; Frequency estimation; Least squares approximation; Polynomials; Prediction methods; Sensor arrays; Signal processing algorithms; Singular value decomposition; Vectors;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.481165
Filename :
481165
Link To Document :
بازگشت